Formation of plasma induced surface damage in silica glass etching for optical waveguides

نویسندگان

  • D. Y. Choi
  • J. H. Lee
  • D. S. Kim
  • S. T. Jung
چکیده

Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP !inductively coupled plasma" with chrome etch masks, which were patterned by reactive ion etching !RIE" using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough !root-mean square roughness greater than 100 nm" and we call this phenomenon plasma induced surface damage !PISD". Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit. © 2004 American Institute of Physics. #DOI: 10.1063/1.1739525$

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface oxidation of Al masks for deep dry-etch of silica optical waveguides

The surface oxidation of Al metal masks in an oxygen plasma was studied for realizing deep dry-etch of silica optical waveguides. The oxidation efficiency of the plasma was found to depend on mainly substrate bias and plasma power. Net sputtering effect happened when ion bombarding potential exceeds certain critical value. However, suitable ion bombarding energy is of benefit to the oxidation p...

متن کامل

Femtosecond laser fabrication of integrated optical waveguides and microfluidic channels for lab-on-chip devices

We use a femtosecond laser to fabricate on a glass substrate both microfluidic channels and high quality optical waveguides, intersecting each other. Waveguide-channel integration opens new prospects for in-situ sensing in lab-on-chip devices. Introduction A lab-on-chip (LOC) is a device that squeezes onto a single glass substrate the functionalities of a biological laboratory, by incorporating...

متن کامل

Perfluorinated polymers for optical waveguides

A long with optical telecommunications systems (see box) (1-3), "integrated optics" (4) and "optical interconnect" (5) technologies are becoming more advanced. The major components of these technologies are photonic integrated circuits (PICs), optoelectronic integrated circuits (OEICs), and optoelectronic multichip modules (OE-MCMs). All the functional devices within these components, including...

متن کامل

Dry Etching Technologies of Optical Device and III-V Compound Semiconductors

Dry etching is one of the elemental technologies for the fabrication of optical devices. In order to obtain the desired shape using the dry etching process, it is necessary to understand the reactivity of the materials being used to plasma. In particular, III-V compound semiconductors have a multi-layered structure comprising a plurality of elements and thus it is important to first have a full...

متن کامل

Dry-etch of As2S3 thin films for optical waveguide fabrication

Plasma etching to As2S3 thin films for optical waveguide fabrication has been studied using a helicon plasma etcher. The etching effects using the processing gases or gas mixtures of O2, Ar, and CF4 were compared. It was found that the O2 plasma had no chemical etching effect to the As2S3, but it could oxidize the surface of the As2S3. The Ar plasma provided a strong ion sputtering effect to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010